Loading [MathJax]/extensions/TeX/mathchoice.js

Pages

Power sum and Wolstenholme's theorem


In the last post, we have learned how to derive formulas for the power summation S_k(n) = 1^k + 2^k + 3^k + \dots + n^k.

Today we will investigate some divisibility properties of the power summation S_k(n). We will prove that if p is a prime number and k is not divisible by p-1 then S_k(p-1) = 1^k + 2^k + 3^k + \dots + (p-1)^k = 0 \pmod{p}.

We will also investigate the following summation S_{-k}(n) = \frac{1}{1^k} + \frac{1}{2^k} + \frac{1}{3^k} + \dots + \frac{1}{n^k}.

There is a theorem in number theory concerning this summation, it is called Wolstenholme's theorem.
Wolstenholme's Theorem. If p is a prime number >3 then S_{-1}(p-1) = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{p-1} ~=_{Q} ~0 \pmod{p^2} and S_{-2}(p-1) = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{(p-1)^2} ~=_{Q} ~0 \pmod{p}.

We will prove a general result, that is, if p is a prime number and k is not divisible by p-1 then S_{-k}(p-1) = \frac{1}{1^k} + \frac{1}{2^k} + \frac{1}{3^k} + \dots + \frac{1}{(p-1)^k} ~=_{Q} ~0 \pmod{p}.


The above notation =_{Q} is to denote the modulo of rational numbers. It means that if we write S_{-k}(p-1) in the form of fraction as follows S_{-k}(p-1) = \frac{1}{1^k} + \frac{1}{2^k} + \frac{1}{3^k} + \dots + \frac{1}{(p-1)^k}  = \frac{U}{V} then the numerator U = 0 \pmod{p}.

Our main tool for today is the Fermat's "little" theorem
Fermat's "little" Theorem. If p is a prime number and a \neq 0 \pmod{p} then a^{p-1} = 1 \pmod{p}.



Power summation

First, let us review the power summation formula.

We have the following binomial identity (m+1)^{k+1} = m^{k+1} + (k+1) m^{k} + {{k+1} \choose 2} m^{k-1} +  \dots + {{k+1} \choose {k-1}} m^{2} + (k+1) m + 1.

So (m+1)^{k+1} - m^{k+1} = (k+1) m^{k} + {{k+1} \choose 2} m^{k-1} +  \dots + {{k+1} \choose {k-1}} m^{2} + (k+1) m + 1.

Substitute m=1,2, \dots,n into the above equation and sum them up as \sum_{m=1}^{n}[(m+1)^{k+1} - m^{k+1}] = \sum_{m=1}^{n} [(k+1) m^{k} + {{k+1} \choose 2} m^{k-1} +  \dots + {{k+1} \choose {k-1}} m^{2} + (k+1) m + 1] we have (n+1)^{k+1} - 1^{k+1} = (k+1) S_k(n) + {{k+1} \choose 2} S_{k-1}(n) +  \dots + {{k+1} \choose {k-1}} S_2(n) + (k+1) S_1(n) + n.

Thus we obtain the power summation formula (k+1) S_k(n) + {{k+1} \choose 2} S_{k-1}(n) +  \dots + {{k+1} \choose {k-1}} S_2(n) + (k+1) S_1(n) = (n+1)^{k+1} - (n+1).

We will now use this formula to derive divisibility properties of the power summation S_k(p-1).



Divisibility properties of S_k(p-1)


Suppose that p is a prime number. Substituting n=p-1 into the above formula we have (k+1) S_k(p-1) + {{k+1} \choose 2} S_{k-1}(p-1) +  \dots + {{k+1} \choose {k-1}} S_2(p-1) + (k+1) S_1(p-1) =  p^{k+1} - p.

  • With k=1 we obtain 2 S_1(p-1) = p^2 - p it follows that S_1(p-1) is divisible by p.
  • With k=2 we obtain 3 S_2(p-1) + 3 S_1(p-1) = p^3 - p it follows that S_2(p-1) is divisible by p.
  • Similarly, for each 1 \leq k \leq p-2, we can prove that S_1(p-1) = S_2(p-1) = \dots = S_{p-2}(p-1) = 0 \pmod{p}.


Now, we will use the Fermat's little theorem to establish the result for other values of k. By Fermat's little theorem, 1^{p-1} = 2^{p-1} = \dots = (p-1)^{p-1} = 1 \pmod{p}.

So if we write k = (p-1)q + r then S_k(p-1) = 1^k + 2^k + 3^k + \dots + (p-1)^k = 1^r + 2^r + 3^r + \dots + (p-1)^r \pmod{p}.

If r=0 then S_k(p-1) = p-1 = -1 \pmod{p}.

Otherwise, if 1 \leq r < p-1 then S_k(p-1) = S_r(p-1) = 0 \pmod{p}.

We have proved the following theorem

Theorem. Suppose that p is a prime number.
  • If k = 0 \pmod{p-1} then S_k(p-1) = 1^k + 2^k + 3^k + \dots + (p-1)^k = -1 \pmod{p}.
  • If k \neq 0 \pmod{p-1} then S_k(p-1) = 1^k + 2^k + 3^k + \dots + (p-1)^k = 0 \pmod{p}.


For example,
  • with p=2011, k=2012, we have 1^{2012} + 2^{2012} + 3^{2012} + \dots + 2010^{2012} = ~0 \pmod{2011}
  • with p=2011, k=2010, 1^{2010} + 2^{2010} + 3^{2010} + \dots + 2010^{2010} = ~ -1 \pmod{2011}







Divisibility properties of S_{-k}(p-1)

Using Fermat's little theorem, we can also find modulo p for the following summation S_{-k}(p-1) = \frac{1}{1^k} + \frac{1}{2^k} + \frac{1}{3^k} + \dots + \frac{1}{(p-1)^k}.

First, let us write k = (p-1) q + r where 0 \leq r \leq p-2.

For each j=1,2, \dots, p-1, we have j^{k} = j^{r} = 1 \pmod{p}

Thus, \frac{1}{j^k} =_Q ~ \frac{1}{j^r} =_Q  ~j^{p-1-r} \pmod{p}

It follows that S_{-k}(p-1) = \frac{1}{1^k} + \frac{1}{2^k} + \frac{1}{3^k} + \dots + \frac{1}{(p-1)^k} =_Q ~ 1^{p-1-r} + 2^{p-1-r} + 3^{p-1-r} + \dots + (p-1)^{p-1-r} = S_{p-1-r}(p-1) \pmod{p}

We obtain the following theorem

Theorem. Suppose that p is a prime number.
  • If k = 0 \pmod{p-1} then S_{-k}(p-1) = \frac{1}{1^k} + \frac{1}{2^k} + \frac{1}{3^k} + \dots + \frac{1}{(p-1)^k} = -1 \pmod{p}.
  • If k \neq 0 \pmod{p-1} then S_{-k}(p-1) = \frac{1}{1^k} + \frac{1}{2^k} + \frac{1}{3^k} + \dots + \frac{1}{(p-1)^k} = 0 \pmod{p}.


For example,

  • with p=2011, k=2012, we have \frac{1}{1^{2012}} + \frac{1}{2^{2012}} + \frac{1}{3^{2012}} + \dots + \frac{1}{2010^{2012}} =_Q ~0 \pmod{2011}
  • with p=2011, k=2010, \frac{1}{1^{2010}} + \frac{1}{2^{2010}} + \frac{1}{3^{2010}} + \dots + \frac{1}{2010^{2010}} =_Q ~ -1 \pmod{2011}





Today we have learned some divisibility properties of power summation. In the homework section, we show another way to prove these results. Let us stop here for now. Hope to see you again in the next post.






Homework.

1. Prove that
\frac{1}{1^{1000}} + \frac{1}{2^{1000}} + \frac{1}{3^{1000}} + \dots + \frac{1}{2010^{1000}} =_Q ~0 \pmod{2011}
\frac{1}{1^{2012}} + \frac{1}{2^{2012}} + \frac{1}{3^{2012}} + \dots + \frac{1}{2010^{2012}} =_Q ~0 \pmod{2011}

2. The divisibility properties of S_{-k}(p-1) can be proved by another way as follows.

Using Bézout's lemma prove that for any j=1,2, \dots, p-1, there exists 1 \leq w_j \leq p-1 such that j ~w_j = 1 \pmod{p}

Prove that w_1, w_2, \dots, w_{p-1} is a permutation of 1,2, \dots, p-1.

We have j^k ~w_j^k = 1 \pmod{p}
thus, \frac{1}{j^k} =_Q ~w_j^k  \pmod{p}

Sum them all up as \sum_{j=1}^{p-1} \frac{1}{j^k} =_Q ~\sum_{j=1}^{p-1} w_j^k \pmod{p}
we have S_{-k}(p-1) =_Q ~ S_{k}(p-1) \pmod{p} thus obtaining the result.


Here is the example with p=7 1 \times 1 = 1 \pmod{7} 2 \times 4 = 1 \pmod{7} 3 \times 5 = 1 \pmod{7} 4 \times 2 = 1 \pmod{7} 5 \times 3 = 1 \pmod{7} 6 \times 6 = 1 \pmod{7}
so 1^k \times 1^k = 1 \pmod{7} 2^k \times 4^k = 1 \pmod{7} 3^k \times 5^k = 1 \pmod{7} 4^k \times 2^k = 1 \pmod{7} 5^k \times 3^k = 1 \pmod{7} 6^k \times 6^k = 1 \pmod{7}
and 1^k =_{Q} ~ \frac{1}{1^k} \pmod{7} 2^k =_{Q} ~ \frac{1}{4^k} \pmod{7} 3^k =_{Q} ~ \frac{1}{5^k} \pmod{7} 4^k =_{Q} ~ \frac{1}{2^k} \pmod{7} 5^k =_{Q} ~ \frac{1}{3^k} \pmod{7} 6^k =_{Q} ~ \frac{1}{6^k} \pmod{7}
Therefore, 1^k + 2^k + 3^k + 4^k + 5^k + 6^k =_Q ~ \frac{1}{1^k} + \frac{1}{2^k} + \frac{1}{3^k} + \frac{1}{4^k} + \frac{1}{5^k} + \frac{1}{6^k} \pmod{7}