
We derive this formula of \cos{\frac{\pi}{5}} by observing that \cos{\frac{2 \pi}{5}} = -\cos{\frac{3 \pi}{5}} and then applying the trigonometric formulas for double angle and triple angle:
\cos{2 x} = 2 \cos^2{x} - 1, \cos{3 x} = 4 \cos^3{x} - 3 \cos{x} to set up a cubic equation for \cos{\frac{\pi}{5}}.
It seems a good occasion now for us to learn about trigonometric multiple-angle formulas. In this post, we will show how to derive formulas for \sin{nx}, \cos{nx}, \tan{nx} and \cot{nx} using de Moivre's identity of the complex numbers.
de Moivre's identity for complex numbers
Complex numbers have the form a + ib where a and b are two real numbers; a is called the real part and ib is called the imaginary part. Here are a few examples of complex numbers 3+2i, ~~ 5-3i, ~~ 2i+7, ~~ 8i, ~~ 4i-2, ~~ 5, ~~ i+1, \dots We do addition, subtraction, multiplication and division for complex numbers exactly the same as we do normal arithmetic for real numbers, except that we need to remember i^2 = -1, ~~ i^3 = -i, ~~ i^4 = -i^2 = 1, ~~ i^5 = i, ~~i^6 = i^2 = -1, \dots
There is a very important fact about complex numbers, that is, any complex number z can be written in a trigonometric form as follows z = |z| (\cos{\phi} + i ~\sin{\phi}).
This trigonometric form is very convenient when we do multiplication and division. This is because (\cos{\alpha_1} + i \sin{\alpha_1})(\cos{\alpha_2} + i \sin{\alpha_2}) = (\cos{\alpha_1} \cos{\alpha_2} - \sin{\alpha_1} \sin{\alpha_2}) + i (\sin{\alpha_1} \cos{\alpha_2} + \cos{\alpha_1} \sin{\alpha_2}) = \cos{(\alpha_1 + \alpha_2)} + i \sin{(\alpha_1 + \alpha_2)}.
So if we have two complex numbers z_1= |z_1|(\cos{\alpha_1} + i \sin{\alpha_1}), z_2= |z_2|(\cos{\alpha_2} + i \sin{\alpha_2}), then we have the following simple formulas for multiplication and division z_1 z_2 = |z_1| |z_2| (\cos{(\alpha_1 + \alpha_2)} + i \sin{(\alpha_1 + \alpha_2)}), \frac{z_1}{z_2}= \frac{|z_1|}{|z_2|} (\cos{(\alpha_1 - \alpha_2)} + i \sin{(\alpha_1 - \alpha_2)}).
In a special case when \alpha_1 = \alpha_2, then we have z^2= |z|^2 (\cos{2 \alpha} + i \sin{2 \alpha}).
By applying the multiplication formula repeatedly, we derive the following formula z^n= |z|^n (\cos{n \alpha} + i \sin{n \alpha}).
When |z|=1 we obtain
From de Moivre's identity, if we use binomial theorem to expand the left hand side, and compare with the right hand side, we can derive formulas for \cos{n \alpha} and \sin{n \alpha} !
Trigonometric multiple-angle formulas
Trigonometric formulas for double angle
Using de Moivre's identity for n=2, we have \cos{2 x} + i \sin{2 x} = (\cos{x} + i \sin{x})^2 = \cos^2{x} + 2 \cos{x} (i \sin{x}) + (i \sin{x})^2 = \cos^2{x} -\sin^2{x} + i 2 \sin{x} \cos{x}
We derive the following
Complex numbers have the form a + ib where a and b are two real numbers; a is called the real part and ib is called the imaginary part. Here are a few examples of complex numbers 3+2i, ~~ 5-3i, ~~ 2i+7, ~~ 8i, ~~ 4i-2, ~~ 5, ~~ i+1, \dots We do addition, subtraction, multiplication and division for complex numbers exactly the same as we do normal arithmetic for real numbers, except that we need to remember i^2 = -1, ~~ i^3 = -i, ~~ i^4 = -i^2 = 1, ~~ i^5 = i, ~~i^6 = i^2 = -1, \dots
- Addition and Subtraction (a + i b) + (c + i d) = (a+c) + i (b+d) , (a + i b)- (c + i d) = (a-c) + i (b - d).
- Multiplication (a + i b)(c + i d) = ac + i ad + i bc + i^2 bd = (ac - bd) + i (bc + ad ) .
- Division we need to use the identity (a + i b)(a - ib ) = a^2 - i^2 b^2 = a^2 + b^2 and so \frac{c + i d}{a + i b} = \frac{(c + i d)(a - ib)}{(a + ib)(a - ib)} = \frac{(ac + bd) + i(ad - bc)}{a^2 + b^2} = \frac{ac + bd}{a^2 + b^2} + i \frac{ad - bc}{a^2 + b^2}.
- Complex conjugate \overline{a + i b} = a - ib, ~~~~\overline{a- ib} = a + ib.
- Absolute value |a + ib| = \sqrt{a^2 + b^2}.
There is a very important fact about complex numbers, that is, any complex number z can be written in a trigonometric form as follows z = |z| (\cos{\phi} + i ~\sin{\phi}).
This trigonometric form is very convenient when we do multiplication and division. This is because (\cos{\alpha_1} + i \sin{\alpha_1})(\cos{\alpha_2} + i \sin{\alpha_2}) = (\cos{\alpha_1} \cos{\alpha_2} - \sin{\alpha_1} \sin{\alpha_2}) + i (\sin{\alpha_1} \cos{\alpha_2} + \cos{\alpha_1} \sin{\alpha_2}) = \cos{(\alpha_1 + \alpha_2)} + i \sin{(\alpha_1 + \alpha_2)}.
So if we have two complex numbers z_1= |z_1|(\cos{\alpha_1} + i \sin{\alpha_1}), z_2= |z_2|(\cos{\alpha_2} + i \sin{\alpha_2}), then we have the following simple formulas for multiplication and division z_1 z_2 = |z_1| |z_2| (\cos{(\alpha_1 + \alpha_2)} + i \sin{(\alpha_1 + \alpha_2)}), \frac{z_1}{z_2}= \frac{|z_1|}{|z_2|} (\cos{(\alpha_1 - \alpha_2)} + i \sin{(\alpha_1 - \alpha_2)}).
In a special case when \alpha_1 = \alpha_2, then we have z^2= |z|^2 (\cos{2 \alpha} + i \sin{2 \alpha}).
By applying the multiplication formula repeatedly, we derive the following formula z^n= |z|^n (\cos{n \alpha} + i \sin{n \alpha}).
When |z|=1 we obtain
de Moivre's identity:
(\cos{\alpha} + i \sin{\alpha})^n = \cos{n \alpha} + i \sin{n \alpha}.
From de Moivre's identity, if we use binomial theorem to expand the left hand side, and compare with the right hand side, we can derive formulas for \cos{n \alpha} and \sin{n \alpha} !
Trigonometric multiple-angle formulas
Trigonometric formulas for double angle
Using de Moivre's identity for n=2, we have \cos{2 x} + i \sin{2 x} = (\cos{x} + i \sin{x})^2 = \cos^2{x} + 2 \cos{x} (i \sin{x}) + (i \sin{x})^2 = \cos^2{x} -\sin^2{x} + i 2 \sin{x} \cos{x}
We derive the following
formula for \cos{2 x}
\cos{2 x} = \cos^2{x} -\sin^2{x} = \cos^2{x} - ( 1 - \cos^2{x}) = 2 \cos^2{x} - 1
formula for \sin{2 x} \sin{2 x} = 2 \sin{x} \cos{x}
formula for \tan{2 x} \tan{2x} = \frac{\sin{2x}}{\cos{2x}} = \frac{2 \sin{x} \cos{x}}{\cos^2{x} -\sin^2{x}} = \frac{2 \sin{x} \cos{x} / \cos^2{x}}{(\cos^2{x} -\sin^2{x}) / \cos^2{x}}= \frac{2 \tan{x}}{1 - \tan^2{x}}
formula for \cot{2 x} \cot{2x} = \frac{\cos{2x}}{\sin{2x}} = \frac{\cos^2{x} -\sin^2{x}}{2 \sin{x} \cos{x}} = \frac{(\cos^2{x} -\sin^2{x}) / \sin^2{x}}{2 \sin{x} \cos{x} / \sin^2{x}} = \frac{\cot^2{x} - 1}{2 \cot{x}}
Trigonometric formulas for triple angle
Using de Moivre's identity for n=3, we have \cos{3 x} + i \sin{3 x} = (\cos{x} + i \sin{x})^3 = \cos^3{x} + 3 \cos^2{x} (i \sin{x}) + 3 \cos{x} (i \sin{x})^2 + (i \sin{x})^3 = \cos^3{x} - 3 \cos{x} \sin^2{x} + i (3 \cos^2{x} \sin{x} - \sin^3{x})
Therefore,
formula for \cos{3 x} \cos{3 x} = \cos^3{x} - 3 \cos{x} \sin^2{x} =\cos^3{x} - 3 \cos{x} (1 - \cos^2{x}) =4 \cos^3{x} - 3 \cos{x}
formula for \sin{3 x} \sin{3 x} = 3 \cos^2{x} \sin{x} - \sin^3{x} =3 (1 - \sin^2{x}) \sin{x} - \sin^3{x} =3 \sin{x} - 4 \sin^3{x}
formula for \tan{3 x} \tan{3 x} = \frac{\sin{3 x}}{\cos{3 x}} = \frac{3 \cos^2{x} \sin{x} - \sin^3{x}}{\cos^3{x} - 3 \cos{x} \sin^2{x}}= \frac{3 \tan{x} - \tan^3{x}}{1 - 3 \tan^2{x} }
formula for \cot{3 x} \cot{3 x} = \frac{\cos{3 x}}{\sin{3 x}} = \frac{\cos^3{x} - 3 \cos{x} \sin^2{x}}{3 \cos^2{x} \sin{x} - \sin^3{x}}= \frac{\cot^3{x} - 3 \cot{x}}{3 \cot^2{x} - 1}
Trigonometric formulas for quadruple angle
Using de Moivre's identity for n=4, we have \cos{4 x} + i \sin{4 x} = (\cos{x} + i \sin{x})^4 = \cos^4{x} + 4 \cos^3{x} (i \sin{x}) + 6 \cos^2{x} (i \sin{x})^2 + 4 \cos{x} (i \sin{x})^3 + (i \sin{x})^4 = \cos^4{x} - 6 \cos^2{x} \sin^2{x} + \sin^4{x} + i (4 \cos^3{x} \sin{x} - 4 \cos{x} \sin^3{x}) Therefore,
formula for \cos{4 x} \cos{4 x} = \cos^4{x} - 6 \cos^2{x} \sin^2{x} + \sin^4{x} = \cos^4{x} - 6 \cos^2{x} (1-\cos^2{x}) + (1- \cos^2{x})^2 = 8 \cos^4{x} - 8 \cos^2{x} + 1
formula for \sin{4 x} \sin{4 x} = 4 \cos^3{x} \sin{x} - 4 \cos{x} \sin^3{x} = 4 \cos{x} (1 - \sin^2{x}) \sin{x} - 4 \cos{x} \sin^3{x} = 4 \cos{x} (\sin{x} - 2 \sin^3{x})
formula for \tan{4 x} \tan{4x} = \frac{\sin{4 x}}{\cos{4 x}} = \frac{4 \cos^3{x} \sin{x} - 4 \cos{x} \sin^3{x}}{ \cos^4{x} - 6 \cos^2{x} \sin^2{x} + \sin^4{x}} = \frac{4 \tan{x} - 4 \tan^3{x}}{ 1 - 6 \tan^2{x} + \tan^4{x}}
formula for \cot{4 x} \cot{4 x} = \frac{\cos{4 x}}{\sin{4 x}} = \frac{\cos^4{x} - 6 \cos^2{x} \sin^2{x} + \sin^4{x}}{4 \cos^3{x} \sin{x} - 4 \cos{x} \sin^3{x}}= \frac{\cot^4{x} - 6 \cot^2{x} + 1}{4 \cot^3{x} - 4 \cot{x} }
Let us stop here for now. In the next post, we will return to the topic of compass-and-straightedge construction. Hope to see you again then.
Homework.
1. Continue with n=5,6,7, \dots and establish formulas for \sin{nx}, \cos{nx}, \tan{nx}, \cot{nx}.
2. Find explicit formulas for \sin{\frac{\pi}{7}}, \sin{\frac{2 \pi}{7}}, \sin{\frac{3 \pi}{7}}, \dots \cos{\frac{\pi}{7}}, \cos{\frac{2 \pi}{7}}, \cos{\frac{3 \pi}{7}}, \dots
3. Find explicit formulas for \sin{\frac{\pi}{9}}, \sin{\frac{2 \pi}{9}}, \sin{\frac{3 \pi}{9}}, \dots \cos{\frac{\pi}{9}}, \cos{\frac{2 \pi}{9}}, \cos{\frac{3 \pi}{9}}, \dots
4. Search on Google http://google.com about Chebyshev polynomial, find out the relationship between Chebyshev polynomial and the trigonometric multiple-angle formulas.