Pages

Sequence - Part 6


Today we will learn about difference operator and use it to prove a fundamental theorem for linear recurrence equations.
A fundamental theorem for linear recurrence equations. Suppose that the characteristic equation can be factored as $$f(x) = a_k x^k + a_{k-1} x^{k-1} + \dots + a_0 = (x - z)^j (b_s x^s + b_{s-1} x^{s-1} + \dots + b_0)$$ and $$f_n = p(n)~z^n,$$ where $p(n)$ is a polynomial of degree less than $j$. Then the sequence $f_n$ satisfies the recurrence equation 
$$a_k f_{n} + a_{k-1} f_{n-1} + \dots + a_1 f_{n-k+1} + a_0 f_{n-k} = 0.$$


Sequence - Part 5


Today we will go through some examples. The first type of examples involves solving a linear recurrence equation to derive a general formula for a sequence. The second type of examples does the reverse process, in which, we are given a formula of a sequence and asked to determine its recurrence equation.


Sequence - Part 4


Today we will learn how to solve a linear recurrence equation and derive a general formula for a sequence. This method will work for all cases, including the case when the characteristic equation has multiple roots.