Pages

Showing posts with label compass and straightedge construction. Show all posts
Showing posts with label compass and straightedge construction. Show all posts

Divide a line segment by compass


Using compass and straightedge, we can construct the midpoint of a line segment, and we can easily divide a line segment into, say three equal parts. The question is, is it possible to do these constructions with just the compass.

The answer is "yes"! Indeed, it is possible to construct the midpoint of a line segment, and it is possible divide a line segment into a number of equal parts by using the compass alone. How amazing is that?! Today, we will look at these constructions!

Construction by compass alone


Normally in geometric construction problems, we use straightedge and compass. Today, we will look at an unusual type of construction problems where we are only allowed to use compass.


Gauss' trigonometric identities for heptadecagon


Today, we write down Gauss' magical trigonometric identities for regular heptadecagon.

Construction algorithm


In our previous post, we have learnt about Similar Triangles and the Right Triangle Altitude Theorem. Today, continuing our journey in the garden of geometry, we want to find answer to the following question
Given a line segment of length $r$, by compass and straightedge, what kind of shapes can we construct? 

Right Triangle Altitude Theorem



Today we will learn about Right Triangle Altitude Theorem and use it to derive Pythagorean Theorem.



How to construct a regular polygon with 15 sides


To feed your curiosity, today we will look at a compass and straightedge construction of the regular polygon with 15 sides and we will show that there is a connection between this construction problem with the measuring liquid puzzle that we have learned from our previous post.

Construction of regular polygons


There are a few classic problems of ancient mathematics that are easy to state but incredibly difficult to solve. Take for example, the problem of constructing regular polygons and the problem of trisecting an angle by compass and straightedge. It was not until the 18th-19th centuries that mathematicians could finally solve them by employing advanced tools of number theory and algebra. Today, we will look at the regular polygon construction problem.
Regular polygon construction problem. Using compass and straightedge, construct a regular polygon with $n$ sides.

Construction of a regular pentagon


Today we will look at a compass-and-straightedge construction of a regular pentagon based on the following trigonometric formula $$\cos{\frac{\pi}{5}} = \frac{1 + \sqrt{5}}{4}.$$


Divide a quadrilateral into equal areas

Today let us consider the following interesting compass-and-straightedge construction problem:
Dividing quadrilateral problem. Given a quadrilateral $ABCD$ and four points $M_1$, $M_2$, $M_3$, $M_4$, in this order, on $AB$. Using compass and straightedge, show how to construct four points $N_1$, $N_2$, $N_3$, $N_4$ on $CD$ so that the four line segments $M_1 N_1$, $M_2 N_2$, $M_3 N_3$ and $M_4 N_4$ divide the quadrilateral into 5 small quadrilaterals of equal area.

Compass-and-straightedge construction


Today we will start a series of posts on compass-and-straightedge construction. Believe it or not, there are a few construction problems that sound simple but it had required more than two thousand years to settle! The most famous ones are the problem of regular polygon construction and the problem of angle trisection. These problems were known in ancient times but it was not until the late 18th-19th centuries that mathematicians could finally solve them using the most modern tools of mathematics.

In this first post, we will learn about some basic compass-and-straightedge constructions. These constructions are assumed as obvious and can be employed in more complex construction problems.